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1. Introduction

For near-real-time use, global land surface tem-
peratures and its derivative products (e.g., average glo-
bal temperature time series and global temperature
anomalies) have been obtained from in situ point
sources located mainly within developed regions
and/or near population centers. Unfortunately, these
stations are neither located evenly nor densely around
the globe. Great care and effort are expended in de-
veloping and maintaining these global networks. For
instance, Quayle et al. (1999) developed a system that

automatically ingests the observations from the Glo-
bal Historical Climate Network (GHCN; Peterson and
Vose 1997) and derives the global land surface tem-
perature from the available reporting stations. These
in situ data are ingested from the Global Telecommu-
nications System, quality assured in real time, and
tested/adjusted for potential inhomogeneities.
Although the GHCN currently constitutes one of the
most complete datasets for historical temperature
trends, it gives an inadequate spatial representation
over many areas. Specifically, internationally ex-
changed temperature observations are sparse over
large regions of Africa, tropical South America, south-
eastern and central Asia, and large sections of the
Arctic and Antarctic.

Ancillary data such as topography and climatic
characteristics have been used to interpolate the in situ
stations into data-sparse regions. Although this ap-
proach results in full global coverage, the “interpola-
tion” technique did not provide additional independent
information of the global field. Furthermore, since
correlation deteriorates as a function of distance from
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surements and the SSM/I-derived areal values is about 2°C with statistical characteristics largely independent of surface
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fication over the same study area. This verification work determined that the standard deviation of the monthly mean
anomalies is 0.76°C at each 1° � 1° grid box. This level of accuracy is adequate to blend the SSM/I-derived temperature
anomaly data with in situ data for monitoring global temperature anomalies in finer detail.
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the observation, interpolation has limited accuracy
beyond certain distances (New et al. 2000). Such tech-
niques may promote misrepresentation of the actual
anomalies over large areas where little or no data are
available. Attempts have also been made to use re-
motely sensed infrared observations to supplement the
in situ network (Davis and Tarpley 1983; Prata and
Cechet 1999). Unfortunately, clouds are opaque at
infrared frequencies and difficulties with producing
accurate cloud clearing algorithms increase errors over
partly cloudy conditions (Ackerman 1996). In contrast,
a passive microwave radiometer provides a more com-
prehensive way to observe the globe by directly mea-
suring the brightness temperature from the surface
under most atmospheric and surface conditions.

The observations of passive microwave radiation
by polar orbiting satellites can be used to measure
many of the earth’s atmospheric and geophysical prop-
erties. In particular, brightness temperatures from the
Special Sensor Microwave/Imager (SSM/I) have been
used over land to derive surface wetness (Basist et al.
1998), snow cover (Grody and Basist 1996), surface
emissivities (Prigent et al. 1997), precipitation (Ferraro
and Marks 1994), and soil moisture (Vinnikov et al.
1999). Ferraro et al. (1996) give an excellent overview
of numerous surface and atmospheric products devel-
oped from the SSM/I instrument. Land surface tem-
perature has been derived having different accuracies
depending on surface conditions (McFarland et al.
1990; Neale et al. 1990; Weng and Grody 1998).
Basist et al. (1998) developed a technique that dynami-
cally adjusts the SSM/I algorithm coefficients for the
effect of liquid water on surface emissivity, resulting
in improved temperature estimates.

The primary difficulty in deriving surface tempera-
ture from passive microwave measurements is the
variable emissivity associated with different surfaces.
For the microwave spectrum the emissivity of soil
depends on its water and/or mineral content, as well
as the effects of vegetation and surface roughness. In
contrast to the microwave emissivity, the emissivity
in the infrared spectrum is less dependent on the wa-
ter content of the soil (Groisman and Genikhovich
1997). Since the microwave emissivity is variable, the
brightness temperature is not a function of surface tem-
perature alone. Furthermore, when snow or ice cov-
ers the surface, the upwelling radiation at low
microwave frequencies primarily comes from the un-
derlying ground (not the surface of the snow pack),
while higher microwave frequencies are scattered by
the ice particles (Rosenfeld and Grody 2000; Basist

et al. 1998). Unfortunately, the microwave measure-
ments over these surfaces have little correspondence
to the surface temperature and must be removed. In
summary, any algorithm that attempts to estimate sur-
face temperature must first infer the particular surface
condition for a microwave measurement, filter the
measurement if reliable adjustments are not currently
possible, and then make appropriate emissivity adjust-
ments to the microwave measurement if the condition
indicates that the surface temperature may be derived.

It is important to remember that the SSM/I data
represent an areal average of the brightness tempera-
ture of the radiating surface and not the point measure-
ment of the ambient air temperature at shelter height.
In this regard, we are comparing two essentially dif-
ferent physical measurements. However, in each step
of this study we have striven to minimize the dispar-
ity of these datasets. It has been shown that over a
given area for a given radiating surface that a compari-
son of the average skin temperature versus the average
shelter height temperature will result in a linear rela-
tionship (Gol’tsberg 1967). The technique presented
in this paper estimates the shelter height temperature
directly from the SSM/I brightness temperatures us-
ing linear combinations of various terms. Implicitly,
the coefficients for these linear equations include both
adjustments for the emissivity of the radiating surface
and corrections for the radiative transfer between the
surface and the shelter height. In anomaly space the
radiative transfer corrections impact the scale of the
anomaly variation with respect to each surface. The
separation of these corrections from the emissivity
adjustments is beyond the scope of this paper.

Herein, we will describe identification of various
radiating surface types, calibration of the emissivity
adjustment for each unique SSM/I signature, and veri-
fication of the accuracy of our approach to estimate
shelter height temperature anomalies from the passive
microwave observations. Expanding on the technique
implemented by McFarland et al. (1990), unique sig-
natures of numerous surface types were identified us-
ing only the SSM/I channel measurements. Using
hourly first-order stations, the emissivity adjustments
were calibrated using a least absolute difference tech-
nique that minimizes the standard error for each surface
type. Then, the temporal changes in these relationships
were used to identify and remove intersatellite bias and
intrasatellite drift. Finally, the dense U.S. cooperative
network of monthly mean in situ temperature anoma-
lies was utilized to verify the temperature anomalies
derived from the SSM/I channels.
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2. Data

a. SSM/I satellite data
This study uses channel measurements from the

SSM/I sensors on three Defense Meteorological Sat-
ellite Program (DMSP) polar-orbiting satellites (F08,
F11, and F13) from 1987 to 1997. The DMSP satel-
lites provide sun synchronized overpasses at 6 A.M. and
6 P.M. These twice daily satellite overpasses are pro-
cessed into 1/3° � 1/3° “pixels” by the National Envi-
ronmental Satellite and Data Information Service and
archived at the National Climatic Data Center (NCDC)
in near-real time. From August 1988 to the end of
1991, erratic signals from the F08 85-GHz channels
forced the removal of the data from our analysis. The
SSM/I instrument measures the brightness tempera-
ture at four frequencies: 19, 37, and 85 GHz with ver-
tical and horizontal polarization and 22 GHz with only
vertical polarization. All of these frequencies are in at-
mospheric window regions with the 22- and 85-GHz
channels in water vapor absorption lines, which are
influenced by atmospheric water vapor and precipi-
table water (Weng and Grody 1998). Various signa-
tures among the seven channel measurements were
used to identify surface types and calculate dynamic
emissivity adjustments. In this paper, we will distin-
guish between the various SSM/I channels by using the
frequency in gigahertz and V for vertical and H for hori-
zontal polarization so that the 37-GHz horizontal po-
larization channel will be denoted as the 37-H channel.

b. Hourly in situ data
The hourly in situ data from National Oceanic and

Atmospheric Administration (NOAA) first-order sta-
tions were used to calibrate the emissivity adjustment
needed to approximate the shelter height surface tem-
perature. This dataset is primarily derived from ob-
servations made at airports, military bases, and
municipal facilities that serve as primary meteorologi-
cal stations. These reports are sent to NCDC, where
they are quality-assured, archived, and disseminated.

c. Summary of the day in situ data
The daily maximum and minimum temperatures

from the NOAA cooperative program (COOP) were
used to estimate the accuracy and precision of the
mean monthly anomaly series over the study period.
Within the study area the COOP data come from a very
dense network of volunteer observations that have
undergone extensive quality assurance before the fi-
nal values are archived at the NCDC.

3. Calibration of surface emissivity

a. Methodology
The eastern half of the United States was chosen for

the study area. This area spans from 100°W to the east-
ern seaboard and from the Canadian border to the Gulf
of Mexico. The complex topography of the western
half of the United States excludes that region because
rapid elevation changes cause large discrepancies be-
tween the point source in situ data and the areal inte-
grated SSM/I data. Coastal areas and 70 km of their
margins are excluded due to the very low emissivity
of the surrounding water and the consequential noise
associated with mixed signals of ocean and land. Our
study area contains a moderate density of quality in
situ stations with temperature measurements (Fig. 1).
Over a year, the surface conditions within this region
consist of wet and dry land covered by trees, grass,
cities, snow, ice, and dead vegetation in a moderate
elevation range (0–1600 m).

The in situ stations monitor the microclimate in a
shelter 2 m above a grass surface. Tests have shown that
these instruments have an accuracy of 1.0°C (Nadolski
1992) at a specific point. On the other hand, the SSM/I
integrates the entire footprint (12.5–60 km) at each of
the four frequencies into an average brightness tem-
perature. The SSM/I measurements mainly emanate
from the radiating surface, which can be barren and/or
vegetated, though there is an atmospheric contribution
at the 22- and 85-GHz water vapor frequencies. For
the most accurate calibration between each SSM/I sig-
nal and the shelter height temperature at a given loca-
tion, only hourly surface observations within one hour
of the SSM/I overpass of the 1/3° square occupied by
the in situ station were used. The following narration
and the flowchart in Fig. 2 elucidate the methodology
and procedures to simulate the shelter height tempera-
tures from the SSM/I channel measurements.

We begin by identifying a surface type (e.g., desert,
wet surface, snow cover) from the theoretical and
empirical relationships among the seven channel mea-
surements. This analysis also allows us to identify
which microwave signatures (i.e., scattering, emission,
and/or polarization) should be used in a regression
equation to minimize the standard error between the
in situ and SSM/I-derived surface temperature. The
unique characteristics of each surface type are dis-
cussed in section 3b below. A regression equation for
each surface type uses the unique relationship between
the SSM/I channel measurements to make dynamic
emissivity adjustments.
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It is evident that the functional
form of e

s
(�) and the accuracy

of T
s
 will improve as we learn

more about the emissivity char-
acteristics of different surfaces.
Currently the specific functional
form for each adjustable surface
is derived from a multivariate
linear regression between the
SSM/I measurements and sur-
face temperatures from the east-
ern half of the United States. The
results of this study are more ac-
curate than in the previous paper
(Basist et al. 1998) since we
have identified additional sur-
face types to develop more pre-
cise proportionality coefficients
for each classification. In using
Eq. (3) to estimate shelter height
temperatures from observations
of the radiating surface, we rely

on two critical factors. One, for a given surface there
is a strong correspondence between coincident skin
and shelter height temperatures (Gol’tsberg 1967).
Two, the atmospheric effect is not entirely neglected
because the derived coefficients, �

i
, weigh heavily

upon the water vapor channels (see Table 1), thereby
incorporating some atmospheric contributions.

We used our past experience (Basist et al. 1998;
Grody and Basist 1996; Ferraro et al. 1996) and
knowledge of snow-covered, vegetated, and wet sur-
faces to determine the effect of physical characteris-
tics upon the passive microwave frequencies. We then
developed empirical relationships among the channels
to identify and filter different surface types. A least
absolute difference (LAD) algorithm (Mielke 1984)
was used to obtain the best proportionality constants,
�, for determining the temperature for each surface
type. Differences between the derived surface tem-
perature and the actual temperature were recursively
examined to 1) further refine the proportionality con-
stants, classification, and filtering algorithm; and
2) identify additional signals associated with new sur-
faces. During this process, weather maps, surface con-
ditions, and coincident weather events were examined
to identify the concurrent surface conditions within the
footprint. As the task progressed, this approach led to
the classification of new surface types and better pro-
portionality coefficients relating the SSM/I channel
measurements to surface temperature. It also helped

FIG. 1. The study area and the first-order stations used for calibration of the SSM/I-derived
surface temperature.
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When the ground is dry and vegetated, the verti-
cally polarized SSM/I channels have a nominal emis-
sivity e

o
 of 0.95. However, when the surface is other

than dry and vegetated, the emissivity must be implied
through a function of scattering and polarization char-
acteristics of the radiating surface. The function can
be written as
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) account for

the different contributions of the various characteris-
tics. Furthermore, the fields of view at the various fre-
quencies range from 60 km at 19 GHz to 12.5 km at
85 GHz, and the proportionality constants in (2) par-
tially account for this variation as well.
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in the identification of signatures for which we can-
not equate the signal from the channel measurements
with in situ surface temperature. These signatures are
currently viewed as indeterminate and therefore fil-
tered [see section 3b(3)]. Any observation that failed
to be identified as a specific surface type, either ad-
justable or unadjustable, is assumed to be in the “dry
vegetated” class. As shown below, observations both
in window and water vapor bands and in polarization
are key to our ability to identify surface types and es-
timate emissivity.

Hourly temperature measurements from the first-
order network were compared to the corresponding
SSM/I-derived temperature at the time of the DMSP
satellite overpass. The SSM/I channel measurements
for these comparisons came from the descending
(morning) pass of the F11 satellite because this satel-
lite has the most stable orbit of the three satellites (see
section 4) and the near surface boundary layer tempera-
ture approaches equilibrium with the skin temperature
in the early morning (Betts and Ball 1995).

b. Results of emissivity calibration
1) FILTERS FOR ADJUSTABLE SURFACES

The inset in each of the graphs in Fig. 3 illustrates
the unique empirical relationships among the channels
used to identify and filter each surface type. This is a
simplified signature of brightness temperature versus
frequency. The “dry vegetated” signature (Fig. 3a)
shows that emissivity goes up slightly with frequency,
and that there is a slightly greater increase in emissiv-
ity for the horizontal compared to the vertical polar-
ization, that is to say, the polarization difference
decreases as frequency rises.

The next three surfaces (Figs. 3b–d) illustrate how
liquid water affects the different SSM/I channels to
form distinct signatures. The simplified signature of
a “wet surface,” shown in Fig. 3b, shows that emis-
sivity increases rather quickly with frequency.
Furthermore, polarization differences for wet surfaces
rapidly decrease as the frequency increases. The sim-
plified signature of “light rain” (Fig. 3c) illustrates a
pattern very similar to that of a wet surface. However,
the scattering and polarization difference characteris-
tics change as frequency increases, resulting in a sepa-
rate surface to be filtered and adjusted. The simplified
signature for “moderate rain” (Fig. 3d) indicates that
the emissivity increases with frequency at the lower
frequencies (19, 22, 37 GHz) but decreases at the high-
est frequency of 85 GHz. This behavior corresponds
to ice scattering at high frequencies due to precipita-

tion, while the low frequencies respond to the emis-
sivity of wet surfaces.

The “thin fresh snow cover” surface (Fig. 3e) is the
best snow-cover surface for attempting to derive sur-
face temperature at the SSM/I frequencies. The decline
in emissivity at the high frequencies due to the scat-
tering from the snow grains is characteristic of all snow
surfaces. However, a low polarization difference at
19 GHz and the monotonic decrease of brightness tem-
perature with frequency corresponds to shallow snow
that has not undergone any metamorphosis (Rosenfeld
and Grody 2000).

The distinct signature for “calcic soil” (Fig. 3f)
shows that the brightness temperature is lower for the
19- and 37-GHz window channels compared to the 22-
and 85-GHz channels that contain a small atmospheric
water vapor contribution. This is due to the low emis-
sivity of calcic (limestone) material, which results in
an increase of the upwelling radiation for the water
vapor channels relative to the more transparent window
channels. For this surface, the polarization difference
only decreases moderately as the frequency increases.

FIG. 2. Flowchart describing the procedure to simulate the shel-
ter height temperatures from the SSM/I channel measurements.
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2) RESIDUALS OF ADJUSTABLE SURFACES

As stated previously, over most dry vegetated sur-
faces the assumed background emissivity, e

o
, is 0.95

at 22V with very little change at other frequencies
(Basist et al. 1998), so that T

s
 � T

b
 (22V)/e

o
(22V).

From the LAD algorithm, the lowest residual relation-
ship between T

s
 and T

b
 for this surface is achieved with

a proportionality coefficient of 1.065 when using the
22V SSM/I channel. Since the empirically derived
proportionality constant for a dry vegetated surface
is very close to the theoretically determined value
(i.e., �

0
 = 1.0/e

o
), our initial technique for calculating

surface temperature is very accurate. The histogram
of the differences between concurrent in situ and
SSM/I surface measurements for the dry vegetated
surface is shown in Fig. 3a. The LAD residuals (in situ
minus SSM/I) form a symmetrical distribution that is
slightly flattened around zero (0) difference. This may
indicate that multiple signatures are passing through
the filter and that further study could discriminate and
separate the signals into several, better estimated,
conditions. The standard deviation of the residuals
(from Table 1) is the highest of the first four surfaces

that are symmetrical and tightly bunched around the
mean.

The next three surfaces display our ability to esti-
mate the surface temperature for different surface con-
ditions pertaining to wet surfaces and rain. The wet
surface (Fig. 3b) with more than 44 000 data points,
has by far the largest number of observations for any
surface type in the study. This surface condition is a
refinement of the wet SSM/I signatures used to de-
velop the algorithms in Basist et al. (1998). It has an
extremely well defined filter and uses four parameters
to estimate surface temperature (Table 1). The major-
ity of the weight resides in the 85V channel measure-
ment because of the higher emissivity of water (which
reduces its effect) at the higher frequencies. The dis-
tribution of the LAD residuals is peaked at zero (0)

First parameter 22V 85V 22V 22V 22V 22V
coefficient � = 1.065 � = 1.454 � = 1.071 � = 1.056 � = 2.314 � = 1.064

Second parameter — 22V � 19V 22V � 85V 19V � 19H 37V 22V � 37V
coefficient � = �0.134 � = 0.218 � = 0.320 � = �2.11 � = 0.169

Third parameter — 37H — 37V � 85V 85V —
coefficient � = �0.405 � = �0.501 � = 0.846

Fourth parameter — 85V � 37V — — — —
coefficient � = �0.784

No. observations 2219 44 619 2882 9894 4883 1597

Average error 0.061°C 0.021°C 0.033°C 0.052°C 0.180°C �0.218°C

Standard deviation 3.144°C 2.64°C 2.914°C 2.416°C 4.286°C 3.874°C

Skewness �0.006 0.066 �0.031 0.090 0.494 �0.219

Kurtosis 0.071 0.502 0.370 0.414 2.599 0.260

TABLE 1. The various surfaces for which emissivity adjustments have been determined using the LAD algorithm. The correspond-
ing parameters and coefficients defined in Eq. (3) are listed along with statistical measures of the goodness of fit of the residual in situ
minus SSM/I values.

Vegetated Wet Light rain Moderate rain Fresh
dry land surface on wet surface on wet surface Limestone snow

FIG. 3 (facing page). A histogram of the differences between
in situ and SSM/I surface temperatures for various surface condi-
tions (a–f) over the eastern United States. The upper-right corner
of each figure provides an idealized depiction of the SSM/I spec-
tral signature for that surface.
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difference, highly symmetrical, and the second low-
est standard deviation of the adjustable conditions. The
residuals for light rain (Fig. 3d) and moderate rain
(Fig. 3c) are very similar to that of the wet surface. The
major factors that separate these three surface condi-
tions are the filters needed to selectively identify each
and the parameters necessary to most accurately esti-
mate surface temperature.

The difference between in situ and SSM/I surface
measurements for a thin fresh snow-cover surface is
shown in Fig. 3e. With a flattened, asymmetrical dis-
tribution, this is the only one of many snow surfaces
that could offer derived surface temperatures at SSM/I
frequencies. More work and ancillary data are needed
to improve this surface.

Even with a very distinct signature, the calcic soil
surface (Fig. 3f) has very few observations in the study
region and represents the highest variance of all the
acceptable surfaces. Due to the lack of exposed lime-
stone in the study area, we were forced to use locations
in the western United States. Consequently, topogra-
phy and a limited number of concurrent measurements
added more noise to the regression. We are trying to
obtain hourly temperatures over Australia where lime-
stone is exposed and topography does not play a ma-
jor role. Our hope is to reduce the residuals with such
data.

3) UNADJUSTABLE SURFACE CONDITIONS

It is important to remove the surface-temperature
estimates from most snow- and ice-covered surfaces.
First, the microwave signals from these bodies radi-
ate from the underlying surface. Since snow is an ef-
fective insulator, this makes the signal sensed by the
SSM/I unrelated to the near-surface air temperature.
The second reason is that once the ice grains have
undergone any significant metamorphic process, such
as freeze/thaw cycles or firnafication in a deep snow
pack, the grain size increases and changes the micro-
wave scattering characteristics. Therefore, we restrict
our adjustment for snow cover to freshly fallen and
relatively thin snow packs by using scattering charac-
teristics at the lower and higher SSM/I frequencies to
filter deep snow and snow that has undergone meta-
morphosis into other forms of ice.

Water on the surface reduces the emissivity and
increases the polarization difference at all SSM/I fre-
quencies. Theoretical and empirical evidence indicates
that the emissivity reduction is a nonlinear function
of the brightness temperature, although a linear as-
sumption is reasonable when the ratio of water to

land/vegetation stays below a certain threshold
(Basist et al. 1998). As the amount of water on the
surface increases, emissivity decreases so much that
atmospheric water vapor as well as other factors not
addressed in our analysis become major sources of
noise because the surface signal-to-emissivity ratio
becomes so low. The acceptable threshold of the ra-
tio of dry to wet surfaces varies as a function of the
emitting surface and atmospheric conditions. For in-
stance, on the tundra, where the atmospheric moisture
is low and the surface is riddled with small pools of
water, we have found that the linear assumption is
valid up to as much as 50% water. However, where
the land is a combination of lake and dry ground and
atmospheric moisture is high, the linear assumption
is only reliable where less than 30% of the surface is
covered by water.

The “mixed pixel” condition removes all the SSM/I
observations with irregular changes in the signal as-
sociated with spatial inhomogeneity within the foot-
print. As an illustration, near the coast the 85-GHz
measurement (12.5-km diameter) may represent dry
ground, whereas at 19 GHz (60-km diameter) the sig-
nal may be depressed due to the contributions of wa-
ter bodies within the large footprint. Another category
filtered from the analyses is “bad” observations, which
occurs when there are either instrument or processing
problems. These types of observations register varia-
tions between adjacent frequencies of 30°C or more,
yield a horizontal polarization measurement higher
than the vertical polarization measurement, or measure
brightness temperatures greater than 150°C or less
than �120°C in one or more channels.

4. Intersatellite calibration

a. Methodology for the intersatellite calibration
The algorithms described in the preceding section

were developed using the F11 6 A.M. data. To apply
these algorithms to the 6 A.M. and 6 P.M. data of all the
satellites, we chose a linear regression analysis of the
mean monthly temperature anomaly fields. Monthly
anomalies were chosen because seasonal changes in
the diurnal cycle strongly affect the relationship be-
tween monthly average temperatures computed using
daily maximum and minimum compared to fixed hour
(e.g., 6 A.M. and 6 P.M.) observations. To examine this
impact, we generated monthly anomalies for both
methods using the hourly first-order stations within the
study region for all the months in the period of record.
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A histogram of the anomalies (Fig. 4) shows that the
time of observation bias in the diurnal cycle is removed
using monthly average anomalies. Figure 4 also shows
the distribution of the differences between these meth-
ods as peaked and symmetrical around zero with a
standard deviation of 0.096°C. There is also evidence
that the instrument’s exposure to sunlight and the po-
sition of the heat-regulating louvers may also induce
a spurious interannual component to the brightness
temperatures (Christy et al. 1998).

The linear regression analysis addresses three
known influences: 1) changes in overpass time make
the temperature trend dependent on the annual cycle
and latitude, 2) linear deterioration of the sensor or
calibration equipment, and 3) decrease in the altitude
of the satellite. The simple methodology is illustrated
by a flowchart in Fig. 5. Separate sets of linear coeffi-
cients identify the drifts for morning and afternoon
passes on each satellite (see Table 2).

b. Results of the intersatellite calibration
The difference between the eastern U.S. mean

monthly anomalies for the morning and afternoon
passes of the F08, F11, and F13 and the correspond-
ing anomalies for the coincident in situ observations
are plotted in Fig. 6. This plot illustrates how the drift
characteristic of each satellite is unique. Superimposed
on each of these slopes is unexplained noise that may
be caused by errors in the satellite-derived product
and/or variations in the boundary conditions that in-
fluence the relationship between in situ shelter height
and satellite-derived temperatures.

Once the linear regression lines are removed, the
morning and afternoon curves are averaged together
for each satellite. Figure 7 shows a time series of all
three satellites with the linear regression fits removed.
These residuals are small compared to the size of the
regional anomalies and will be removed with an ac-
tive in situ anchor in our final blended product.

5. Verification with high-density in situ
data

a. Methodology of the verification
Up to this point we have been directly comparing

the individual observations from the SSM/I and hourly
data. This approach ensured the most accurate propor-

06 as F08 �0.297 1.344 1987 Jul 1990 Jul

06 ds F11 0.060 �0.168 1992 Jan 1995 Apr

06 ds F13 �0.294 0.623 1995 May 9999 Jan

18 ds F08 �0.728 5.750 1987 Jul 1990 Jul

18 as F11 0.546 1.039 1992 Jan 1995 Apr

18 as F13 �0.616 3.099 1995 May 9999 Jan

TABLE 2. Linear regression coefficients for the intersatellite calibration (ISC) calculated for the morning and afternoon overpasses
of each satellite used in the study. The ISC calculated from this table produce the monthly offsets removed from Fig. 6 to generate
Fig. 7.

Slope Intercept Begin Begin End End
Hour Node Satellite (°C) (°C) year month year month

FIG. 4. The difference between the mean monthly anomalies
calculated by different methods using the hourly first-order sta-
tions. The first method is the average of the daily maximum and
minimum temperatures. The second method is the average of the
6 A.M. and 6 P.M. temperatures.



2150 Vol. 81, No. 9, September 2000

tionality constants for the emissivity adjustments and
the best regression coefficients for the intersatellite
calibrations. Our next goal is to test the accuracy and
precision of the SSM/I-derived temperature anoma-
lies against independent in situ data–based monthly
anomalies. Figure 8 illustrates the process used to
compare the SSM/I-derived anomalies with the veri-
fication dataset anomalies. We used the dense coop-
erative network of daily maximum and minimum
temperatures to derive an in situ mean monthly
anomaly series from 1987 to 1997. All of the days
with both maximum and minimum temperature ob-
servations were averaged for each day, then these daily
values were averaged into monthly mean values from

which monthly anomalies are calculated. This high-
resolution dataset in the United States is an excellent
verification dataset to test the ability of the satellite
anomalies to monitor regional monthly temperature
anomalies.

The verification region is the same region used in
the calibration study, encompassing the eastern half
of the United States from the Canadian border to the
Gulf of Mexico, and from 100°W to the East Coast.
Each 1° ��1° grid box over this land surface area con-
tains between 6 and 13 in situ stations. In contrast, the
average brightness temperature from the SSM/I mea-
surement integrates up to nine derived temperatures
in each 1° ��1° grid box.

The SSM/I channel measurements were processed
through our currently “best” surface filtering and emis-
sivity adjustment algorithms to obtain the derived
6 A.M. and 6 P.M. temperature daily observations. For
each 1/3° pixel the SSM/I-derived daily observations
were tested against filters described in the succeeding
paragraphs. Even with our best estimations of surface
temperature from the SSM/I data, orbital gaps limit
coverage in the mid- and low latitudes. Data dropouts
and our filters also limit the satellite-derived coverage
such that extreme care must be taken to represent a
month’s anomalies with the remaining observations.
The most damaging effect is caused by the inability
to derive surface temperatures during snow events. A
persistent snow cover of a few days can cause a sig-
nificant warm bias in the mean monthly anomalies.
Several filters attempt to limit this effect.

FIG. 5. A flowchart of the procedure to account for and remove
the intersatellite drifts for all three microwave instruments.

FIG. 6. The bias between in situ and SSM/I-derived tempera-
ture anomalies during the morning and afternoon passes of the F08
(1987–90), F11 (1992–94), and F13 (1995–97), independently.
This diagram illustrates that the drift characteristic of each satel-
lite is unique.
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The following “runs” test is a filter to remove
months without enough daily SSM/I observations to
adequately represent the monthly in situ value. If three
periods of five consecutive days, or two periods of six
consecutive days, or one period of seven consecutive
days are missing, then the monthly satellite-derived
temperature for the 1/3° pixel is defined as missing.
Similarly, the monthly temperature was set to miss-
ing if five consecutive days of snow cover or snow-
cover observations bracketing missing values were
observed. If a month was not removed after passing
through these filters, temporal interpolation schemes
from none at all to cubic spline with various tensions
were investigated before we identified that a linear
approach provided the best procedure to fill in the re-
maining missing days before calculating the monthly
temperature in the remaining 1/3° pixels.

We performed a preliminary study to identify how
the statistical distribution of point and areal averaged
measurements represent their respective grand
anomaly in each 1° ��1° grid box. Figure 9 illustrates
the absolute difference and variation of the average of
individual anomalies in larger and larger groups com-
pared to the grand mean. A single station or pixel value
has an average absolute difference of 1°C compared
to the grid box mean and a standard deviation of 1°C
about this difference. The absolute difference and
variation of both datasets diminish asymptotically to-
ward zero as the number of values averaged together
increases. By the time three values within a grid box
are averaged together, the absolute difference dimin-
ishes to 0.5°C, with a variation of around 0.5°C. This
point offered a compromise between removing too
many grid boxes due to insufficient data and restrict-

FIG. 7. Same as Fig. 6, after the linear drifts are removed.

FIG. 8. Flowchart of the process used to compare the SSM/I-
derived mean monthly anomalies with the cooperative network
dataset anomalies.

FIG. 9. Plot showing the ability of both an in situ observation
and SSM/I pixel to represent their corresponding mean anomaly
from a 1° ��1° grid box. The plot starts out comparing individual
values against the grid box mean and their standard deviation. The
following values represent the error characteristics as more ob-
servations are averaged together to represent the grid box mean.
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ing the uncertainty of the calculated grid box mean.
So that once the 1/3° resolution data has passed
through the preceding filters, at least three out of the
nine pixels must have values before an average value
is calculated to represent the 1° grid box.

Next, a histogram of the monthly differences be-
tween the two anomaly fields at each grid box shows
the correspondence between in situ– and satellite-
based anomalies for the entire region and period of
record. To test the ability of the satellite-derived
anomalies to represent the in situ–based anomalies in
the corresponding grid box, the individual monthly mean
anomalies for each dataset were calculated indepen-
dently. These series were compared for the period of
record. Various statistics identify the correspondence
and deviations in these two fields. Last, spatial auto-
correlation and/or temporal correlation for each 1° �
1° grid box throughout the study area is calculated and
graphically presented in a map format.

Improvements to the generation of 1° ��1° tempera-
ture anomalies with respect to the warm snow bias and
the linear interpolation technique for better agreement
with in situ measurements can be found in Peterson
et al. (2000).

b. Results of the verification
Figure 10 shows the distribution of the residuals

of in situ minus satellite-derived monthly temperature
anomalies for all remaining 1° ��1° grids. This analy-
sis of more than 10 000 data points with a standard de-
viation of 0.76°C indicates that the satellite-derived
monthly temperature anomalies have a strong corre-
spondence to the in situ–based anomaly. It is impor-
tant to note that these differences can be ascribed to
several factors: errors in the derived temperatures,
in situ measurement errors, variations in atmospheric
contributions, differences between point measure-
ments and spatially integrated values, and discrepan-
cies between shelter height temperature anomalies and
those at the radiating surface. An analysis of the spa-
tial structure in the satellite-derived field consistently
demonstrates strong coherence well within 0.5°C.

The time series of monthly anomalies across the
study area over the period 1987–97, with a period be-
tween 1989 and 1991 removed (as discussed above)
is presented in Fig. 11. The regional anomalies gener-
ally fluctuate between �2° and 2°C and the average
fluctuation from the mean is 1.15°C. The two datasets
share the variance with a signal-to-noise ratio of 2.5
and a mean difference of 0.34°C. The correlation co-
efficient (r) over the time series is 0.92. Figure 12

FIG. 10. Distribution of the residuals between each 1° ��1° grid
of in situ minus SSM/I monthly temperature anomalies. Each
monthly grid box value is a separate observation providing more
than 10 000 data points over the study period.

FIG. 11. Time series of monthly anomalies across the study area
over the period 1987–97, with a period between 1989 and 1991
removed (as discussed in the text). Anomalies during the record
generally fluctuate between �2° and 2°C, with average fluctua-
tion from the mean averaging 1.15°C.

FIG. 12. Time series on the difference between the two datasets
presented in Fig. 11.
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shows a time series of the difference between the two
datasets. There are two occasions when the differences
exceed 1°C. These are winter months when the sam-
pling is greatly diminished in the study area due to
snow. During almost every month the differences were
far less than the actual temperature anomaly.

The temporal correlation in each grid box of the
study area is mapped in Fig. 13. There is a significant
area where the correlation coefficient (r) exceeds 0.90.
This area covers portions of the northern plains, the
Midwest, and the Tennessee valley. The majority of
the study area has correlation coefficients greater than
0.80, which means that more than two-thirds of the
variance is shared between the in situ and satellite-
derived temperature anomalies. There are some lim-
ited areas where correlation coefficients drop below
0.70. One of these areas is eastern Texas, where we
have investigated potential causes for the lower cor-
relation over this area and have not been able to iden-
tify any particular source of the problem. Another area
with a lower correlation is the lower Mississippi val-
ley. This area experiences extreme flooding during part
of the year. When there is extensive surface water, the
relationship between channel
measurements becomes non-
linear and introduces noise in
the derived product. In general,
the two fields have both high
spatial and temporal correlation
throughout the study.

6. Summary and
conclusions

In situ temperature observa-
tions do not provide finely de-
tailed global coverage; therefore,
additional data sources are needed
to supplement these traditional
observations. Satellite-borne in-
frared observations have been
tried for years, but cloud con-
tamination continues to re-
sist filtering. This leaves passive
microwave radiation as the next
best option. Although clouds are
not a problem in the microwave
spectrum, there is the issue of
variable emissivity of the radiat-
ing surface. We addressed this

variation by understanding the radiating characteris-
tics of numerous surfaces and made dynamic emissiv-
ity adjustments as a consequence of the surface type
of each observed signal.

Spatially and temporally coincident SSM/I obser-
vations and in situ data were used to develop regres-
sion equations to estimate the emissivity adjustments.
Each adjustable surface type within the SSM/I data has
a different set of parameters and goodness of fit with
respect to the shelter height temperatures. The
intersatellite calibration expanded the usable SSM/I
observations to include all of the 6 A.M. and 6 P.M. sat-
ellites by correcting for linear nonmeteorological
changes in the signals over time, for example, changes
in satellite, drifts in overpass time, sensor drift, and
altitude reduction.

An independent high-resolution dataset was used
to validate the accuracy and precision of the satellite-
derived surface temperature anomalies. Both the satel-
lite and reference time series had similar distributions
around their mean, and the difference between the two
anomaly fields had a standard deviation of 0.76°C with
low kurtosis and skewness. The spatial correlation over

FIG. 13. Temporal correlation in each grid box of the study area. There is a significant
area where the correlation coefficient exceeds 0.90; this area covers portions of the north-
ern plains, the Midwest, and the Tennessee valley. The majority of the study area has corre-
lation coefficients greater than 0.80, although some isolated areas do drop below 0.70.
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the time series was 0.92 and temporal correlation over
the study area generally exceeded 0.80. There was
some spatial and temporal autocorrelation in the re-
sidual, but it is at an acceptable level.

Several limitations to be corrected in future work
are worth noting. Expansion of the SSM/I measure-
ments to fill in orbital gaps, data dropouts, and miss-
ing days will generate a more representative monthly
time series. Examination of in situ data from other
regions will help determine the effects of the diurnal
cycle. It is planned to 1) include data from other SSM/I
satellite platforms at different overpass times, 2) iden-
tify a new base period and perform similar analyses
to the ones presented in this study, 3) add many satel-
lite orbits that are missing in our current datasets, and
4) investigate changes in the diurnal cycle related to
location and latitude. To improve the derived tempera-
ture over barren surfaces, daily in situ observations
from Australia and elsewhere may remove current to-
pography problems. Also, the utility of infrared data
will be studied for temperatures over snow-covered
areas and barren surfaces. Introduction of new surface-
type categories and investigation of nonlinear relation-
ships between SSM/I channel measurements and

emissivity, along with adjustments to incorporate cur-
rently unusable data, will improve temperature deri-
vations for the existing categories.

Even with the shortcomings mentioned in the pre-
ceding paragraph and the necessity to refine limestone
and other barren surface types, we scrutinized the abil-
ity of this technique to derive land surface tempera-
ture anomalies on a global scale. A representative
comparison of the SSM/I-derived temperature anoma-
lies with the NOAA sea surface temperature anoma-
lies (Reynolds and Smith 1994) is shown for June
1998 (Fig. 14). This map is a composite of the monthly
1° ��1° temperature anomalies for both datasets using
the 1992–98 base period. Note the correspondence and
continuity of the two independent datasets as coastal
anomalies smoothly merge together and the strong
wave structure across the northern tier of the North-
ern Hemisphere. In areas where the land–ocean tem-
perature relationship is weak, such as the Arabian
peninsula, Queensland, western North America, and
southeast Asia, there is excellent agreement between
the GHCN (Fig. 15) and SSM/I anomalies. In areas
where the GHCN has full coverage, such as the United
States and Europe, the SSM/I dataset reveals much

FIG. 14. Map of global surface temperature anomalies provided from the SSM/I instrument and NOAA-blended SST product dur-
ing June 1998, using a 1992–98 base period. Anomalies are derived at 1°C resolution.
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finer detail. In GHCN data-sparse regions, such as
western and northern Asia, central Africa, and South
America, the greater coverage and finer resolution of
the SSM/I reveals anomaly patterns unavailable
through the in situ network. Finally, the anomalies
over Australia (where limestone and quartz prevail)
have an excellent correspondence between the two
datasets. The point is that the global relationship be-
tween a high quality network like the GHCN and the
SSM/I-derived temperature anomalies is strong and
will only improve as better filtering algorithms and
calibration coefficients are derived over such surfaces.
A comprehensive analysis of a global blended prod-
uct using the SSM/I-derived and GHCN temperatures
is described in the companion article by Peterson et al.
(2000).

Although we categorized and adjusted emissivity
of many surface types to produce a finely detailed land
surface temperature anomaly field, this is a continu-
ing process, and further studies are needed to develop
ways to merge other remotely sensed observations and
to better understand the relationship between the
SSM/I channel measurements and in situ temperatures.
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